Neuroanatomical and morphological properties of neurons that generate inspiratory related breathing rhythm and influence respiratory motor pattern in mice
نویسندگان
چکیده
The relationship between neuron morphology and function is a perennial issue in neuroscience. Information about synaptic integration, network connectivity, and the specific roles of neuronal subpopulations can be obtained through morphological analysis of key neurons within any given microcircuit. Breathing is essential behavior for humans and all mammals, yet the neural microcircuit that governs respiration is not completely understood. The respiratory neural microcircuit resides within the ventral respiratory column located in the medulla. Within the respiratory column, the site of respiratory rhythm generation is the bilaterally distributed preBötzinger complex (preBötC). Rhythmgenerating neurons in the preBötC are derived from a single genetic line, i.e., precursor cells expressing the transcription factor Developing brain homeobox-1 (Dbx1). An analysis of over 40 dendritic morphological features of rhythmogenic Dbx1 preBötC neurons and putatively premotor Dbx1 neurons in the intermediate reticular formation, revealed these two populations are similar except reticular neurons have a larger dendritic diameter, which may contribute to a greater passive transmembrane conductance. Both populations showed commissural axon projections and reticular formation neurons show premotor-like projections to the XII motor nucleus. These morphological data provide additional evidence supporting bilateral synchronization the preBötC through Dbx1 neurons, and demonstrate that Dbx1 preBötC neuron connectivity includes recurrent interconnections. On the molecular level, the ion channels that mediate rhythm-generating whole-cell ion currents have not been not identified, and were investigated using principally an anatomical approach. The nonspecific cation current, ICAN, underlies robust inspiratory drive potentials in the preBötC and the persistent sodium current, INaP may play a role in the production of robust bursts when respiration is challenged in such cases as anoxia or hypoxia. The leading candidate for ion channels that contribute to ICAN belong to the transient membrane receptor (Trp) ion channel superfamily and the leading ion channel candidate for INaP is Nav1.6. I determined the presence of Trpc3 ion channels and Nav1.6 ion channels on Dbx1 preBötC neurons (as well as their expression in neighboring non-Dbx1 preBötC neurons). Finally, breathing behavior involves periodic sighs, which are slower than normal eupneic breathing but critical for lung function. I examined receptor expression for bomebsin-like peptides neuromedin B (NMB) and gastrin releasing peptide (GRP), which are important for sigh behavior. I show that NMB and GRP receptors are expressed in Dbx1 preBötC neurons and are not expressed by glia in the preBötC, as posited by some because of the low frequency of sigh breaths. These advances in morphological and anatomical knowledge can be used to design targeted in vitro and in vivo experiments to further explore their role in respiratory rhythm and pattern generation.
منابع مشابه
Morphology of Dbx1 respiratory neurons in the preBötzinger complex and reticular formation of neonatal mice
The relationship between neuron morphology and function is a perennial issue in neuroscience. Information about synaptic integration, network connectivity, and the specific roles of neuronal subpopulations can be obtained through morphological analysis of key neurons within a microcircuit. Here we present morphologies of two classes of brainstem respiratory neurons. First, interneurons derived ...
متن کاملOutward Currents Contributing to Inspiratory Burst Termination in preBötzinger Complex Neurons of Neonatal Mice Studied in Vitro
We studied preBötzinger Complex (preBötC) inspiratory interneurons to determine the cellular mechanisms that influence burst termination in a mammalian central pattern generator. Neonatal mouse slice preparations that retain preBötC neurons generate respiratory motor rhythms in vitro. Inspiratory-related bursts rely on inward currents that flux Na(+), thus outward currents coupled to Na(+) accu...
متن کاملIrregular Breathing in Mice following Genetic Ablation of V2a Neurons.
Neural networks called central pattern generators (CPGs) generate repetitive motor behaviors such as locomotion and breathing. Glutamatergic neurons are required for the generation and inhibitory neurons for the patterning of the motor activity associated with repetitive motor behaviors. In the mouse, glutamatergic V2a neurons coordinate the activity of left and right leg CPGs in the spinal cor...
متن کامل“Physiological and Morphological Characterization of Genetically Defined Classes of Interneurons in Respiratory Rhythm and Pattern Generation of Neonatal Mice”
Breathing in mammals depends on an inspiratory-related rhythm that is generated by glutamatergic neurons in the preBötzinger complex (preBötC), a specialized site of the lower brainstem. Rhythm-generating preBötC neurons are derived from a single lineage that expresses the transcription factor (TF) Dbx1, but the cellular mechanisms of rhythmogenesis remain incompletely understood. To elucidate ...
متن کاملDefining preBötzinger Complex Rhythm- and Pattern-Generating Neural Microcircuits In Vivo
Normal breathing in rodents requires activity of glutamatergic Dbx1-derived (Dbx1(+)) preBötzinger Complex (preBötC) neurons expressing somatostatin (SST). We combined in vivo optogenetic and pharmacological perturbations to elucidate the functional roles of these neurons in breathing. In transgenic adult mice expressing channelrhodopsin (ChR2) in Dbx1(+) neurons, photoresponsive preBötC neuron...
متن کامل